Hind limb proportions and kinematics: are small primates different from other small mammals?
نویسنده
چکیده
Similar in body size, locomotor behaviour and morphology to the last common ancestor of Primates, living small quadrupedal primates provide a convenient model for investigating the evolution of primate locomotion. In this study, the hind limb kinematics of quadrupedal walking in mouse lemurs, brown lemurs, cotton-top tamarins and squirrel monkeys are analysed using cineradiography. The scaling of hind limb length to body size and the intralimb proportions of the three-segmented hind limb are taken into consideration when kinematic similarities and differences are discussed. Hind limb kinematics of arboreal quadrupedal primates, ranging in size between 100 g and 3000 g, are size independent and resemble the hind limb kinematics of small non-cursorial mammals. A common feature seen in smaller mammals, in general, is the horizontal position of the thigh at touchdown and of the lower leg at lift-off. Thus, the maximum bone length is immediately transferred into the step length. The vertical position of the leg at the beginning of a step cycle and of the thigh at lift-off contributes the same distance to pivot height. Step length and pivot height increase proportionally with hind limb length, because intralimb proportions of the hind limb remain fairly constant. Therefore, the strong positive allometric scaling of the hind limb in arboreal quadrupedal primates affects neither the kinematics of hind limb segments nor the total angular excursion of the limb. The angular excursion of the hind limb in quadrupedal primates is equal to that of other non-cursorial mammals. Hence, hind limb excursion in larger cercopithecine primates differs from that of other large mammals due to the decreasing angular excursion as part of convergent cursorial adaptations in several phylogenetic lineages of mammals. Typical members of those phylogenetic groups are traditionally used in comparison with typical primates, and therefore the ;uniqueness' of primate locomotor characteristics is often overrated.
منابع مشابه
Understanding hind limb weight support in chimpanzees with implications for the evolution of primate locomotion.
Most quadrupedal mammals support a larger amount of body weight on their forelimbs compared with their hind limbs during locomotion, whereas most primates support more of their body weight on their hind limbs. Increased hind limb weight support is generally interpreted as an adaptation that reduces stress on primates' highly mobile forelimb joints. Thus, increased hind limb weight support was l...
متن کاملKinematic and EMG determinants in quadrupedal locomotion of a non-human primate (Rhesus).
We hypothesized that the activation patterns of flexor and extensor muscles and the resulting kinematics of the forelimbs and hindlimbs during locomotion in the Rhesus would have unique characteristics relative to other quadrupedal mammals. Adaptations of limb movements and in motor pool recruitment patterns in accommodating a range of treadmill speeds similar to other terrestrial animals in bo...
متن کاملThe kinematic consequences of locomotion on sloped arboreal substrates in a generalized (Rattus norvegicus) and a specialized (Sciurus vulgaris) rodent.
Small mammals must negotiate terrains that consist of numerous substrates that vary in diameter, surface structure, rigidity and orientation. Most studies on mammals have focused on the effects of substrate diameter during horizontal locomotion, especially in small- to medium-sized primates and marsupials. Locomotion across sloped arboreal substrates, however, is poorly understood. Here, in ord...
متن کاملBody mass distribution and gait mechanics in fat-tailed dwarf lemurs (Cheirogaleus medius) and patas monkeys (Erythrocebus patas).
Most quadrupeds walk with lateral sequence (LS) gaits, where hind limb touchdowns are followed by ipsilateral forelimb touchdowns. Primates, however, typically walk with diagonal sequence (DS) gaits, where hind limb touchdowns are followed by contralateral forelimb touchdowns. Because the use of DS gaits is nearly ubiquitous among primates, understanding gait selection in primates is critical t...
متن کاملKinematic and Gait Similarities between Crawling Human Infants and Other Quadruped Mammals
Crawling on hands and knees is an early pattern of human infant locomotion, which offers an interesting way of studying quadrupedalism in one of its simplest form. We investigate how crawling human infants compare to other quadruped mammals, especially primates. We present quantitative data on both the gait and kinematics of seven 10-month-old crawling infants. Body movements were measured with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 208 Pt 17 شماره
صفحات -
تاریخ انتشار 2005